Spectrometers for RF breakdown studies for CLIC

نویسندگان

  • M. Jacewicz
  • V. Ziemann
  • T. Ekelöf
  • A. Dubrovskiy
  • R. Ruber
چکیده

A e+e− collider of several TeV energy will be needed for the precision studies of any new physics discovered at the LHC collider at CERN. One promising candidate is CLIC, a linear collider which is based on a two-beam acceleration scheme that efficiently solves the problem of power distribution to the acceleration structures. The phenomenon that currently prevents achieving high accelerating gradients in high energy accelerators such as the CLIC is the electrical breakdown at very high electrical field. The ongoing experimental work within the CLIC collaboration is trying to benchmark the theoretical models focusing on the physics of vacuum breakdown which is responsible for the discharges. In order to validate the feasibility of accelerating structures and observe the characteristics of the vacuum discharges and their eroding effects on the structure two dedicated spectrometers are now commissioned at the high-power test-stands at CERN. First, the so called Flashbox has opened up a possibility for non-invasive studies of the emitted breakdown currents during two-beam acceleration experiments. It gives an unique possibility to measure the energy of electrons and ions in combination with the arrival time spectra and to put that in context with accelerated beam, which is not possible at any of the other existing test-stands. The second instrument, a spectrometer for detection of the dark and breakdown currents, is operated at one of the 12 GHz stand-alone test-stands at CERN. Built for high repetition rate operation it can measure the spatial and energy distributions of the electrons emitted from the acceleration structure during a single RF pulse. Two new analysis tools: discharge impedance tracking and tomographic image reconstruction, applied to the data from the spectrometer make possible for the first time to obtain the location of the breakdown inside the structure both in the transversal and longitudinal direction thus giving a more complete picture of the vacuum breakdown phenomenon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - PS DIVISION CERN/PS 2002-059 (RF) CLIC Note 532 CLIC 30 GHZ ACCELERATING STRUCTURE DEVELOPMENT

The main effects which limit accelerating gradient in CLIC (Compact Linear Collider) main linac accelerating structures are RF breakdown and pulsed surface heating. Recent highlights of the structure development program are presented, including demonstration of higher accelerating gradients using tungsten and a complete redesign of the CLIC main linac accelerating structure, based on reduced su...

متن کامل

RF-Breakdown in High-Frequency Accelerators

RF breakdown in high-frequency accelerators appears to limit the maximum achievable gradient as well as the reliability of such devices. Experimental results from high power tests, obtained mostly in the framework of the NLC/GLC project at 11 GHz and from the CLIC study at 30 GHz, will be used to illustrate the important issues. The dependence of the breakdown phenomena on rf pulse length, oper...

متن کامل

Study of Rf Breakdown in Normal Conducting Cryogenic Structure

RF Breakdown experiments on short 11.424 GHz accelerating structures at SLAC have shown that properties of rf breakdown probability are reproducible for structures of the same geometry. At a given rf power and pulse shape, the rf breakdown triggers continuously and independently at a constant average rate. Hypotheses describing the properties of the rf breakdown probabilities involve defects of...

متن کامل

Beam Dynamics for the Preliminary Phase of the New Clic Test Facility (ctf3)

In the framework of the CLIC (Compact Linear Collider) RF power source studies, the scheme of electron pulse compression and bunch frequency multiplication, using injection by RF deflectors into an isochronous ring, will be tested, at low charge, during the preliminary phase of the new CLIC Test Facility (CTF3) at CERN. In this paper, we describe the beam dynamics studies made in order to asses...

متن کامل

SLAC/CERN High Gradient Tests of an X-Band Accelerating Section

High frequency linear collider schemes envisage the use of rather high accelerating gradients: 50 to 100 MV/m for Xband and 80 MV/m for CLIC. Because these gradients are well above those commonly used in accelerators, high gradient studies of high frequency structures have been initiated and test facilities have been constructed at KEK [1], SLAC [2] and CERN [3]. The studies seek to demonstrate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016